
Data Normalization in R: When, Why, and How
to Scale Your Data Correctly

Table of contents

Introduction . 3
Normalization vs. Standardization: Clearing Up the Terminology 4
Why Is Normalization Necessary? . 5
Should Normalization Always Be Applied? . 6

When Is Normalization Needed? A Model-Based Decision Table 7
When Should Normalization Be Applied? Before or After the Train–Test Split? . . . 8

An Illustrative Example: Scaling Before vs. After the Split 8
Common Normalization Methods and When to Use Them 9

Z-score Standardization . 10
Min–Max (Range) Scaling . 10
Robust Scaling (Median and IQR) . 11
Power Transformations Combined with Scaling (Box–Cox and Yeo–Johnson) . 12
Choosing a Method: No Single Best Answer . 13

Do Different Data Types Require Different Scaling Strategies? 13
Continuous Numeric Variables . 13
Count and Ordinal Numeric Variables . 13
Categorical Variables (Factors or Characters) 14
Binary Variables (0/1 Indicators) . 14
Summary: Scaling Depends on Variable Meaning 15

Should All Variables Be Scaled? . 15
The Target Variable (y) . 15
Predictor Variables . 15

Numeric Predictors Only . 15
Excluding Non-informative Numeric Variables 16
Handling Low-Variance Predictors . 16

A Practical Rule of Thumb . 16
Application Plan in R: Data and Modeling Scenario 16

Modeling Objective . 17

1

Scope and Focus . 17
Transition to Implementation . 17
Data Access and Availability . 18

Implementation in R: Split, Baseline, and the Cost of Doing It Wrong 18
Setup and Variable Selection . 18
Load Data and Create a Working Dataset . 19
Train–Test Split and Evaluation Setup . 20

Create a Stratified Train–Test Split . 20
Sanity Check: Is the Target Distribution Similar Across Splits? 21
Optional Check: Quick Summary Statistics 22

Model Specification: A Scale-Sensitive Baseline 23
Model Specification . 24

Scenario A — Baseline: No Scaling . 24
Evaluate on the Test Set . 25
Interpretation . 25

Scenario B — Incorrect Normalization (Data Leakage) 26
Leakage Pipeline: Normalize Using Full Data 26
Interpretation . 27

Scenario C — Correct Normalization (Train-Only Scaling) 28
Correct Pipeline: Normalize Using Training Data Only 28
Interpretation . 29

Results Comparison . 29
Performance Summary . 29
Visual Comparison (RMSE) . 30
Interpretation . 31

Practical Takeaways from the Application . 32
Discussion and Conclusion . 32
References . 33

2

Introduction

This article is part of a broader series on data preprocessing in R. In earlier posts, we
focused on two problems that quietly ruin analyses long before modeling begins: missing data
and outliers. Both topics shared a common theme: preprocessing choices are not cosmetic;
they change what the model is allowed to learn. In this installment, we move to the next
decision point in the same pipeline: normalization (scaling)—often treated as “just a quick
step,” but in practice a decisive modeling choice.

Related posts in this preprocessing series

• Handling Missing Data in R: A Comprehensive Guide
https://medium.com/r-evolution/handling-missing-data-in-r-a-comprehensive-
guide-eca195eaead3

3

https://medium.com/r-evolution/handling-missing-data-in-r-a-comprehensive-guide-eca195eaead3
https://medium.com/r-evolution/handling-missing-data-in-r-a-comprehensive-guide-eca195eaead3

• Outliers in Data Analysis: Detecting Extreme Values Before Modeling in R
https://medium.com/r-evolution/outliers-in-data-analysis-detecting-extreme-
values-before-modeling-in-r-with-i%CC%87stanbul-airbnb-data-3b37e9ee989e

Normalization (or more broadly, scaling) is frequently presented as a minor technical
adjustment—something to apply quickly and forget. In practice, scaling is not a technical
detail but a modeling decision. When the same dataset is processed using different scaling
strategies, the behavior of many models changes substantially. Distances, similarity measures,
penalty terms, and optimization paths are all affected. As a result, the nearest neighbors
selected by KNN, the clusters formed by K-means, the principal components identified by
PCA, and even the coefficients chosen by Ridge or Lasso regression can differ. Scaling does
not merely “prepare” the data; it actively shapes how a model interprets importance and
structure.

More importantly, scaling is not universally beneficial. Applied in the wrong context, it
can degrade model performance or—worse—introduce subtle forms of data leakage that
contaminate evaluation. A common example is learning scaling parameters (such as means
and standard deviations) from the entire dataset before splitting into training and test sets.
This procedure allows information from the test distribution to leak into the training process,
producing performance estimates that cannot be trusted. In such cases, the issue is not the
scaling method itself, but when and how it is applied. Knowing how to call scale() in R is
trivial; understanding what to scale, when to scale it, and why is not.

In this article, normalization is treated as an integral part of the modeling strategy rather than
a routine preprocessing step. We will address, step by step, the following questions:

• Why is normalization necessary?
• Should it always be applied?
• At what stage should it be performed—before or after the train–test split?
• Which scaling methods are commonly used, and in which contexts do they make sense?
• Should different data types be treated differently?
• Is scaling appropriate for all variables, including the target variable?

By combining conceptual discussion with practical R implementations, this guide aims to
provide clear and principled answers to each of these questions.

Normalization vs. Standardization: Clearing Up the Terminology

In both academic writing and everyday practice, the terms normalization and standardization
are frequently used interchangeably. This loose usage is one of the main sources of confusion in
data preprocessing. In reality, these terms refer to different scaling strategies, each with
distinct assumptions, effects, and use cases. Before discussing when and how scaling should be
applied, it is therefore essential to clarify what is actually meant by each approach.

4

https://medium.com/r-evolution/outliers-in-data-analysis-detecting-extreme-values-before-modeling-in-r-with-i%CC%87stanbul-airbnb-data-3b37e9ee989e
https://medium.com/r-evolution/outliers-in-data-analysis-detecting-extreme-values-before-modeling-in-r-with-i%CC%87stanbul-airbnb-data-3b37e9ee989e

Standardization, often referred to as z-score scaling, rescales a variable so that it has a
mean of zero and a standard deviation of one. Formally, each observation is transformed
by subtracting the sample mean and dividing by the sample standard deviation. In the R
ecosystem, this logic is implemented in preprocessing tools such as step_normalize() from
the recipes package. Standardization preserves the shape of the original distribution while
putting variables on a comparable scale. It is particularly useful for models that are sensitive to
the relative magnitude of predictors, such as linear models with regularization, support vector
machines, and neural networks.

Normalization, in a stricter sense, often refers to min–max scaling. This approach rescales
variables to lie within a fixed interval, most commonly [0,1]. Each value is transformed based
on the minimum and maximum observed in the training data. Min–max scaling is easy to
interpret and is frequently used in algorithms where bounded inputs are desirable. However, it
is also more sensitive to extreme values, since a single outlier can heavily influence the scaling
range.

A third commonly used approach is robust scaling, which relies on the median and the
interquartile range (IQR) instead of the mean and standard deviation. By construction, this
method is less affected by outliers and heavy-tailed distributions. Robust scaling is especially
useful in real-world datasets where extreme values are not errors but genuine observations. At
the same time, it is not a universal solution; in some data structures, robust measures may
become unstable or uninformative.

The reason terminology becomes blurred in practice is simple: many practitioners use the word
normalization as a generic label for “any kind of scaling.” As a result, two people may both say
they normalized their data while having applied entirely different transformations. Throughout
this article, we will avoid this ambiguity by explicitly stating which scaling method is used
and why. This distinction is not pedantic—it is essential for understanding how scaling choices
influence model behavior.

Why Is Normalization Necessary?

The necessity of normalization becomes clear once we recognize that many modeling techniques
do not operate on raw variable values directly, but on relationships derived from them—such
as distances, similarities, penalties, or variance directions. When predictors are measured on
different scales, these derived quantities can be dominated by variables with larger numerical
ranges, regardless of their substantive importance. In such cases, the model does not learn
from the data structure itself, but from arbitrary measurement units.

This issue is most apparent in distance-based methods such as k-nearest neighbors (KNN)
and K-means clustering. These algorithms rely explicitly on distance calculations, typically
Euclidean distance. If one variable ranges between 0 and 1 while another ranges between 0 and
10,000, the latter will dominate the distance computation almost entirely. As a result, proximity
is determined not by overall similarity but by the scale of a single variable. Normalization

5

ensures that each predictor contributes to the distance metric in a balanced and interpretable
way, allowing the algorithm to reflect genuine similarity rather than numerical magnitude.

Normalization is equally critical in models that incorporate regularization, such as Ridge
and Lasso regression. In these models, coefficients are penalized to control model complexity.
However, the penalty term is directly tied to the scale of the predictors. If variables are not on
comparable scales, the regularization mechanism will shrink coefficients unevenly, effectively
penalizing some predictors more than others for reasons unrelated to their predictive relevance.
Scaling aligns the predictors so that regularization operates as intended: as a constraint on
model complexity rather than an artifact of measurement units.

Other widely used techniques—including support vector machines (SVMs), neural
networks, and principal component analysis (PCA)—are also highly sensitive to scaling.
In SVMs and neural networks, optimization procedures depend on gradients that are influenced
by feature magnitudes, affecting both convergence speed and stability. In PCA, the directions
of maximum variance are determined by the scale of the variables; without normalization,
components may simply reflect variables with the largest variances rather than the most
informative underlying structure. In all these cases, scaling is not an optional refinement but a
prerequisite for meaningful model behavior.

By contrast, tree-based models such as decision trees, random forests, and gradient boosting
machines are generally invariant to monotonic transformations of individual predictors. Since
splits are based on ordering rather than distance or magnitude, scaling is often unnecessary for
these methods. Nevertheless, this does not imply that normalization is universally irrelevant
in tree-based pipelines. Hybrid workflows—where tree-based models are combined with
distance-based components, rule-based similarity measures, or downstream models sensitive
to scale—may still require careful consideration of scaling choices. The key point is not that
normalization should always be applied, but that it should be applied with respect to the
assumptions of the modeling approach.

From a broader perspective, normalization plays a central role in modern predictive modeling
workflows. As emphasized in the predictive modeling literature, preprocessing steps are not
independent of the model; they are part of the modeling strategy itself. Scaling decisions shape
how information is represented and, ultimately, how learning takes place. Understanding why
normalization is necessary is therefore a prerequisite for deciding when and how it should be
applied—a topic we address next.

Should Normalization Always Be Applied?

A natural question at this point is whether normalization should be applied by default in
every modeling task. The short answer is no. Normalization is not a universally beneficial
preprocessing step; its usefulness depends on the assumptions and internal mechanics of the
chosen model. Applying scaling blindly can be as problematic as ignoring it altogether. What
is needed is a decision framework that links model characteristics to preprocessing choices.

6

For a large class of models, normalization is strongly recommended. This group includes
distance-based methods such as k-nearest neighbors (KNN) and K-means clustering, as well as
techniques like principal component analysis (PCA), support vector machines (SVMs), neural
networks, and penalized regression models (Ridge, Lasso, Elastic Net). In all these cases, either
distances, inner products, variance directions, or penalty terms play a central role. Without
scaling, these mechanisms are dominated by variables with larger numerical ranges, leading
to distorted learning behavior. For such models, normalization is not a refinement but a
prerequisite for meaningful results.

By contrast, normalization is generally unnecessary for tree-based models such as decision
trees, random forests, and gradient boosting machines (e.g., XGBoost, GBM). These models
rely on recursive binary splits based on variable ordering rather than on distances or magnitudes.
Since monotonic transformations do not affect the relative ordering of values, scaling typically
has no impact on model performance. As a result, normalization is often omitted in purely
tree-based pipelines without any loss of effectiveness.

Between these two extremes lies a set of models for which normalization is context-dependent.
Ordinary linear regression, for example, does not require scaling for estimation itself, but
normalization may still be useful for numerical stability, interpretability of coefficients, or
comparability across predictors. Similarly, Naive Bayes models may or may not benefit from
scaling depending on the assumed feature distributions and the types of variables involved. In
these cases, the decision to normalize should be guided by the modeling objective rather than
by a fixed rule.

The key takeaway is that normalization should be applied with respect to the model’s
assumptions, not as a default preprocessing habit. To make this decision explicit, Table 1
summarizes common modeling approaches and whether normalization is typically required.

When Is Normalization Needed? A Model-Based Decision Table

Model / Method
Is Normalization
Recommended? Rationale

KNN Yes Distance calculations are scale-sensitive
K-means Yes Cluster assignment depends on distances
PCA Yes Variance directions dominated by scale
SVM Yes Optimization and margins depend on feature

magnitude
Neural Networks Yes Gradient-based optimization is

scale-sensitive
Ridge / Lasso /
Elastic Net

Yes Penalty terms depend on predictor scale

Linear Regression
(OLS)

Depends Not required for estimation, but useful for
stability and interpretation

7

Model / Method
Is Normalization
Recommended? Rationale

Naive Bayes Depends Depends on feature types and distributional
assumptions

Decision Trees No Split rules depend on ordering, not scale
Random Forest /
GBM / XGBoost

No Tree-based structure is scale-invariant

When Should Normalization Be Applied? Before or After the Train–Test Split?

This is the most critical question in the entire preprocessing workflow—and the point at which
many otherwise sound analyses quietly go wrong. The issue is not whether normalization should
be applied, but when it should be applied. At the center of this question lies a fundamental
concept in predictive modeling: data leakage.

Data leakage occurs when information from outside the training set is used, directly or indirectly,
during model training. In the context of normalization, leakage typically arises when scaling
parameters—such as means and standard deviations (for standardization) or minimum and
maximum values (for min–max scaling)—are estimated using the full dataset before splitting
into training and test sets. Although this may appear harmless, it allows information from
the test set to influence the preprocessing step, leading to overly optimistic performance
estimates.

The correct principle is straightforward but non-negotiable:
scaling parameters must be learned exclusively from the training data.
Once learned, the same transformation—with fixed parameters—must be applied to the test set
and to any future, unseen data. This ensures that the test set truly represents new information
and that model evaluation reflects genuine generalization rather than procedural artifacts.

This principle is central to modern modeling frameworks. In the tidymodels/recipes philoso-
phy, preprocessing steps are trained on the training data and then applied consistently to all
other datasets. Similarly, in the caret framework, preprocessing transformations are estimated
from the training set and reused when predicting on new data. In both cases, preprocessing is
treated as part of the model training process—not as an independent, preliminary operation.

To see why this distinction matters, consider the following conceptual comparison.

An Illustrative Example: Scaling Before vs. After the Split

Suppose we have a dataset that we intend to split into training and test sets. We want to
standardize a numeric predictor using z-score scaling.

Incorrect approach (scaling before the split):

8

1. Compute the mean and standard deviation using the entire dataset.

2. Standardize all observations using these global parameters.

3. Split the scaled data into training and test sets.

4. Train and evaluate the model.

At first glance, this workflow seems efficient. However, the scaling parameters already incorpo-
rate information from the test set. The test data are no longer independent of the training
process, even though they were not explicitly used to fit the model.

Correct approach (scaling after the split):

1. Split the raw data into training and test sets.

2. Compute scaling parameters (mean, standard deviation, etc.) using only the training set.

3. Apply the learned transformation to the training set.

4. Apply the same transformation to the test set.

5. Train the model on the scaled training data and evaluate it on the scaled test data.

In practice, these two approaches can lead to noticeably different evaluation results. Models
trained using the incorrect workflow often appear to perform better on the test set—not because
they generalize better, but because the preprocessing step has already “seen” the test data. This
difference is especially pronounced in smaller datasets, in datasets with strong distributional
differences between training and test splits, or when extreme values are present.

The takeaway is unambiguous:

Split the data first.
Fit preprocessing steps on the training data.
Apply the same transformations to the training and test sets.

Any deviation from this sequence undermines the validity of model evaluation, regardless of
how sophisticated the modeling technique may be.

Common Normalization Methods and When to Use Them

Normalization is not a single technique but a family of transformations, each designed to
address a specific modeling concern. Choosing an appropriate method requires understanding
what problem the transformation is solving and which assumptions it implicitly
makes. In this section, we review the most commonly used scaling approaches, discuss their
strengths and limitations, and clarify when each method is appropriate.

9

Z-score Standardization

Z-score standardization rescales a variable so that it has a mean of zero and a standard deviation
of one. Each observation 𝑥𝑖 is transformed as:

𝑧𝑖 = 𝑥𝑖 − 𝜇
𝜎

,

where 𝜇 denotes the sample mean and 𝜎 the sample standard deviation, both estimated from
the training data only.

Advantages.
Z-score standardization places variables on a comparable scale while preserving the shape of
their original distributions. It is particularly suitable for models that rely on inner products,
gradient-based optimization, or regularization (e.g., penalized linear models, SVMs, neural
networks).

Limitations.
A widespread misconception is that standardization assumes normally distributed data. This
is incorrect. Z-score scaling does not require normality; it only uses the first two moments of
the distribution. However, it is sensitive to extreme values: large outliers can inflate 𝜎, thereby
reducing the relative influence of most observations.

When to use.
A strong default choice when predictors differ substantially in scale and when outliers are either
absent or have already been treated.

Min–Max (Range) Scaling

Min–max scaling rescales variables to a fixed interval, most commonly [0, 1]. The transformation
is:

𝑥∗
𝑖 = 𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
.

Advantages.
Intuitive and ensures all transformed values lie within a predefined range. Often used when
bounded inputs are desirable (e.g., some neural network settings).

Limitations.
Highly sensitive to extreme values: a single outlier can stretch the range and compress most
observations. Also, when applied to test or future data, transformed values may fall outside

10

[0, 1] if they exceed the training-set min/max. This is expected and must be handled in
deployment.

When to use.
When input bounds are meaningful and the training data represent the likely range of future
observations.

Robust Scaling (Median and IQR)

Robust scaling replaces mean and standard deviation with the median and the interquartile
range (IQR). The transformation is:

𝑥∗
𝑖 = 𝑥𝑖 − median(𝑥)

IQR(𝑥)
,

where:

IQR(𝑥) = 𝑄0.75 − 𝑄0.25.

Advantages.
Less affected by extreme values and heavy-tailed distributions; useful when outliers are mean-
ingful rather than errors.

Limitations.
Not universally stable. In highly concentrated variables, IQR(𝑥) (or related robust measures
such as MAD) may be zero or extremely small, making the transformation unstable or undefined.
This must be checked explicitly.

When to use.
When outliers are present and structurally inherent, and you want scaling that is less sensitive
to extremes.

11

Power Transformations Combined with Scaling (Box–Cox and Yeo–Johnson)

Power transformations aim to stabilize variance and reduce skewness before scaling.

The Box–Cox transformation (for strictly positive data) is:

𝑥(𝜆)
𝑖 =

⎧{
⎨{⎩

𝑥𝜆
𝑖 −1
𝜆 , 𝜆 ≠ 0,

log(𝑥𝑖), 𝜆 = 0.

The Yeo–Johnson transformation (allows zero and negative values) is:

𝑥(𝜆)
𝑖 =

⎧
{
{
{
{
{
⎨
{
{
{
{
{
⎩

(𝑥𝑖+1)𝜆−1
𝜆 , 𝑥𝑖 ≥ 0, 𝜆 ≠ 0,

log(𝑥𝑖 + 1), 𝑥𝑖 ≥ 0, 𝜆 = 0,

− (−𝑥𝑖+1)2−𝜆−1
2−𝜆 , 𝑥𝑖 < 0, 𝜆 ≠ 2,

− log(−𝑥𝑖 + 1), 𝑥𝑖 < 0, 𝜆 = 2.

Why combine with scaling?
Power transformations modify distributional shape but do not put variables on a common scale.
After applying Box–Cox or Yeo–Johnson, variables are typically centered and scaled.

Order matters.
A practical default sequence is: power transformation → centering → scaling. Scal-
ing before addressing skewness can weaken the effect of the transformation and complicate
interpretation.

When to use.
When strong skewness or heteroscedasticity is present and when model assumptions or opti-
mization benefit from more symmetric distributions.

12

Choosing a Method: No Single Best Answer

There is no universally optimal normalization method. Each approach reflects a trade-off
between robustness, interpretability, and sensitivity to data characteristics. The appropriate
choice depends on the model, the data structure, and the modeling objective.

The relevant question is not “Which normalization method is best?”
but “Which transformation aligns with my data and my model’s assumptions?”

Do Different Data Types Require Different Scaling Strategies?

Normalization decisions should never be made independently of data types. Different variable
types carry different semantic meanings, and applying the same scaling strategy indiscriminately
can lead to misleading representations or unnecessary transformations. A principled prepro-
cessing workflow therefore begins by distinguishing between variable types and understanding
how each interacts with scaling.

Continuous Numeric Variables

Continuous numeric variables are the primary candidates for normalization. When such
variables are measured on different scales—such as income in thousands and proportions
between 0 and 1—scaling is often essential for models that rely on distances, gradients, or
regularization. Z-score standardization, min–max scaling, or robust scaling are all reasonable
options, depending on the presence of outliers and the modeling objective.

In practice, most normalization methods are designed with continuous variables in mind, and
applying them here rarely raises conceptual concerns. The main decision revolves around which
scaling method is most appropriate, not whether scaling should be applied at all.

Count and Ordinal Numeric Variables

Some numeric variables are technically continuous in storage but conceptually represent counts
or ordered categories. Examples include the number of visits, rankings, Likert-scale responses,
or discrete event counts. Treating such variables as purely continuous can be problematic,
especially when their distributions are highly skewed or bounded at zero.

In these cases, applying a logarithmic or power transformation before scaling is often more
appropriate than direct normalization. Power transformations can reduce skewness and stabilize
variance, after which standardization or robust scaling may be applied. The key point is that

13

the meaning of the variable matters: a difference of one unit in a count variable does not
necessarily carry the same interpretation across its range.

Categorical Variables (Factors or Characters)

Categorical variables should never be scaled directly. Their values represent qualitative
categories rather than numerical magnitudes, and applying normalization to raw category codes
is meaningless.

When categorical variables are included in models that require numeric inputs, they must first
be transformed using an encoding scheme such as one-hot (dummy) encoding. After encoding,
the question of scaling arises again. In many cases, scaling encoded variables is unnecessary.
However, in penalized regression models or distance-based methods, normalization of one-hot
encoded variables may be beneficial to ensure that categorical and continuous predictors are
treated on comparable scales.

The important distinction is that scaling applies after encoding, not before, and only when
the model’s assumptions justify it.

Binary Variables (0/1 Indicators)

Binary variables occupy a special position. Since they already lie on a fixed and interpretable
scale, normalization is usually unnecessary and may even obscure interpretation. For many
models, leaving binary indicators unchanged is the most transparent choice.

That said, binary variables often enter preprocessing pipelines automatically when a rule such
as “scale all numeric predictors” is applied. In such cases, standardization will transform a 0/1
variable into values centered around zero with unit variance. While this does not usually harm
model performance, it changes the interpretation of coefficients and can complicate downstream
analysis.

This highlights an important practical lesson: automated preprocessing pipelines should be used
with care. Even when a transformation is mathematically valid, it may not be conceptually
desirable for all variable types.

14

Summary: Scaling Depends on Variable Meaning

The decision to normalize should always be guided by the semantic role of a variable, not merely
by its storage type. Continuous measurements, counts, ordered responses, categorical indicators,
and binary flags interact with scaling in fundamentally different ways. Effective preprocessing
therefore requires more than applying a generic rule—it requires aligning transformations with
the structure and meaning of the data.

Should All Variables Be Scaled?

A common mistake in preprocessing workflows is to treat normalization as a blanket operation
applied to every variable in the dataset. In reality, not all variables should be scaled, and
doing so indiscriminately can reduce interpretability or even introduce unintended distortions.
Scaling decisions must therefore be made at the variable level, guided by both statistical and
semantic considerations.

The Target Variable (y)

In most predictive modeling tasks, the target variable should not be normalized. Scaling the
response does not improve model estimation and often complicates interpretation, particularly
in regression settings where coefficients and predictions are expected to be expressed in the
original units.

There are, however, notable exceptions. In neural network regression or other optimization-
heavy models, scaling the target variable can improve numerical stability and convergence
behavior. In such cases, predictions must be transformed back to the original scale before
evaluation and interpretation. Outside these specific contexts, leaving the target variable
unchanged remains the standard and preferred practice.

Predictor Variables

For predictor variables, scaling should be applied selectively rather than universally.

Numeric Predictors Only

Normalization is meaningful only for numeric predictors. Applying scaling to non-numeric
variables—either directly or implicitly through arbitrary numeric coding—has no conceptual
justification. As discussed earlier, categorical variables must first be encoded, and even then,
scaling is optional and model-dependent.

15

Excluding Non-informative Numeric Variables

Not all numeric variables carry meaningful quantitative information. Identifier variables such as
IDs, account numbers, or arbitrary codes may be stored as numeric values but do not represent
magnitudes or distances. Scaling such variables is meaningless and potentially harmful, as it
introduces artificial structure where none exists. These variables should be excluded from the
modeling process altogether, not merely from scaling.

Handling Low-Variance Predictors

Variables with extremely low or zero variance provide little to no information for modeling.
Scaling such predictors does not solve the underlying problem; it merely rescales noise. In
practice, low-variance and zero-variance predictors should be identified and removed before
normalization.

Many preprocessing frameworks formalize this step. For example, approaches based on the
logic of zero-variance or near-zero-variance filtering (often referred to as zv or nzv steps) ensure
that only informative predictors enter the scaling stage. This not only improves computational
efficiency but also reduces the risk of numerical instability in downstream models.

A Practical Rule of Thumb

A disciplined preprocessing workflow follows a clear sequence:

1. Identify and remove non-informative variables (IDs, constants, near-constants).
2. Select numeric predictors that represent meaningful quantities.
3. Apply appropriate scaling only to this subset.
4. Leave the target variable unscaled, unless there is a compelling model-specific reason to

do otherwise.

Scaling is most effective when it is deliberate and selective, not automatic. Treating
normalization as a universal operation may simplify code, but it rarely leads to better models.

Application Plan in R: Data and Modeling Scenario

To demonstrate the practical implications of normalization decisions, we use the Ames Housing
dataset, a well-known benchmark dataset designed for predictive modeling. The dataset contains
2,930 observations and a rich set of predictors describing residential properties in Ames, Iowa.
These predictors span multiple data types, including continuous numeric variables, discrete

16

counts, ordinal ratings, and categorical features. This diversity makes the dataset particularly
suitable for illustrating how scaling interacts with different variable types.

The Ames Housing dataset is distributed within the modeldata package in the tidymodels
ecosystem. It was explicitly curated for teaching and methodological demonstrations, ensuring a
realistic but well-documented structure. The presence of variables measured on vastly different
scales—such as living area, lot size, and quality scores—provides a natural setting for exploring
the effects of normalization.

Modeling Objective

The primary goal of this application is not to optimize predictive performance, but to isolate
and examine the impact of different normalization strategies. For this reason, the modeling
task is intentionally kept simple. We focus on predicting the sale price of a house as a
regression problem, using a fixed model specification across all experiments.

The model itself serves merely as a vehicle for comparison. By holding the model constant
and varying only the preprocessing strategy, we can attribute differences in performance and
behavior directly to scaling decisions rather than to model complexity or tuning choices.

Scope and Focus

Throughout the application section, the emphasis remains firmly on preprocessing:

• the same training–test split is used across all scenarios,
• the same set of predictors is retained,
• the same model structure is applied.

Only the normalization strategy changes. This design allows us to answer a focused question:

How much do scaling choices matter when everything else is kept equal?

By structuring the analysis in this way, the results highlight normalization as an integral
component of the modeling pipeline rather than a secondary technical detail.

Transition to Implementation

In the next section, we move from design to execution. We begin by defining a train–test
split and establishing a baseline preprocessing workflow. From there, we introduce alternative
normalization strategies and compare their effects using consistent evaluation criteria.

17

Data Access and Availability

The Ames Housing dataset used in this application is available through the modeldata package,
which is part of the tidymodels ecosystem. No external download is required. Once the package
is installed, the dataset can be accessed directly within R.

The dataset is provided for educational and methodological purposes and is accompanied by
detailed documentation. For reference, the official description is available at:

https://modeldata.tidymodels.org/reference/ames.html

In the next section, we load the dataset directly from the package and proceed with the
train–test split and preprocessing workflow.

Implementation in R: Split, Baseline, and the Cost of Doing It Wrong

In this section, we operationalize the key principle introduced earlier:

Split → fit preprocessing on train → apply to train/test

We use the Ames Housing dataset from the modeldata package (no external download required)
and compare three pipelines using the same model:

1. Baseline (no scaling)
2. Incorrect scaling (data leakage): scaling parameters learned from the full dataset
3. Correct scaling: scaling parameters learned from the training set only

The goal is not to build the best possible model but to isolate the effect of scaling
decisions.

Setup and Variable Selection

Before defining any model, we clarify what we are modeling and why these variables are used.

Modeling goal.
We treat Sale_Price as the target variable and build a regression model that predicts house
sale prices based on a small set of numeric predictors. The purpose is not to maximize predictive
accuracy, but to create a controlled environment where the effect of scaling choices is easy to
observe.

Why a small subset of predictors?
The Ames dataset contains many variables, including categorical and ordinal predictors. For
the normalization demonstrations, we intentionally select a compact set of numeric features
with clearly different measurement scales. This makes the consequences of scaling (and data
leakage) more visible and easier to interpret.

18

https://modeldata.tidymodels.org/reference/ames.html

Selected variables (interpretation).

• Sale_Price: sale price of the house (response variable).

• Gr_Liv_Area: above-ground living area (a size-related continuous measure).

• Lot_Area: lot size (typically much larger numeric range than living area).

• Year_Built: construction year (a temporal numeric variable).

• Overall_Cond: overall condition rating (an ordinal-like numeric score).

• Latitude, Longitude: geographic coordinates capturing location effects.

Load Data and Create a Working Dataset

library(tidymodels)
library(modeldata)

data(ames, package = "modeldata")

set.seed(2026)

ames_small <- ames %>%
dplyr::select(

Sale_Price,
Gr_Liv_Area,
Lot_Area,
Year_Built,
Overall_Cond,
Latitude,
Longitude

)

Missing-value check within the selected columns
ames_small %>%

summarise(across(everything(), ~ sum(is.na(.)))) %>%
tidyr::pivot_longer(everything(), names_to = "variable", values_to = "n_missing")

19

A tibble: 7 x 2
variable n_missing
<chr> <int>

1 Sale_Price 0
2 Gr_Liv_Area 0
3 Lot_Area 0
4 Year_Built 0
5 Overall_Cond 0
6 Latitude 0
7 Longitude 0

This step constructs a clean working dataset (ames_small) and confirms whether missing values
exist in the selected columns. For the comparisons in the next sections, it is important that
the pipelines differ only by preprocessing choices (e.g., scaling), not by inconsistent handling of
missing data.

Train–Test Split and Evaluation Setup

Before discussing scaling, we must establish a clean evaluation setup. The key idea is simple:

Split first. Then learn any preprocessing parameters from the training
set only.

Without a proper train–test split, we cannot meaningfully talk about generalization, and any
comparison involving normalization risks becoming misleading.

Create a Stratified Train–Test Split

set.seed(2026)

split_obj <- initial_split(ames_small, prop = 0.80, strata = Sale_Price)

train_data <- training(split_obj)
test_data <- testing(split_obj)

nrow(train_data)

[1] 2342

20

nrow(test_data)

[1] 588

What this does.

• prop = 0.80 assigns roughly 80% of the data to training and 20% to testing.

• strata = Sale_Price performs a stratified split based on the target variable.
This reduces the risk that the test set ends up with an atypical concentration of very low
or very high prices—something that can easily happen with skewed targets like house
prices.

How to interpret the output.

• If the full dataset contains 2,930 observations, you should see approximately:

- training: 2,342 rows

- test: 588 rows

This corresponds closely to the intended 80/20 split and indicates that no unintended row loss
occurred during preprocessing.

Sanity Check: Is the Target Distribution Similar Across Splits?

bind_rows(
train_data %>% mutate(split = "train"),
test_data %>% mutate(split = "test")

) %>%
ggplot(aes(x = Sale_Price, fill = split)) +
geom_histogram(bins = 40, alpha = 0.7, color = "white") +
facet_wrap(~ split, scales = "free_y") +
scale_fill_manual(

values = c(train = "#1f77b4", test = "#ff7f0e")
) +
labs(

title = "Sale_Price distribution after train–test split",
x = "Sale_Price",
y = "Count",
fill = "Data split"

) +
theme_minimal()

21

test train

0e+00 2e+05 4e+05 6e+05 8e+05 0e+00 2e+05 4e+05 6e+05 8e+05

0

100

200

300

400

0

25

50

75

100

Sale_Price

C
ou

nt

Data split

test

train

Sale_Price distribution after train–test split

What to look for.

• Both distributions should be right-skewed with a similar central mass.

• There should be no strong imbalance where most expensive (or cheapest) homes appear
in only one split.

In the plot, the overall shapes are highly similar and the mid-range is well represented in both
sets, indicating that stratification preserved the structure of the target variable across splits.

Optional Check: Quick Summary Statistics

This is a compact numerical confirmation of what the plot shows.

train_summary <- train_data %>%
summarise(
split = "train",
n = n(),
mean = mean(Sale_Price),
median = median(Sale_Price),
sd = sd(Sale_Price),
min = min(Sale_Price),
max = max(Sale_Price)
)

22

test_summary <- test_data %>%
summarise(
split = "test",
n = n(),
mean = mean(Sale_Price),
median = median(Sale_Price),
sd = sd(Sale_Price),
min = min(Sale_Price),
max = max(Sale_Price)
)

bind_rows(train_summary, test_summary)

A tibble: 2 x 7
split n mean median sd min max
<chr> <int> <dbl> <dbl> <dbl> <int> <int>

1 train 2342 180447. 160000 79157. 12789 755000
2 test 588 182185. 160500 82784. 35311 625000

How to interpret this.

• Small differences between train and test are expected.

• Large gaps—especially in the median—may indicate an unbalanced split.

Your summaries show nearly identical means and medians (train: 180,447 / 160,000; test:
182,185 / 160,500) and similar standard deviations, supporting the conclusion that the split is
well balanced. Differences in the maximum values are expected due to rare high-priced homes
and do not indicate a problematic split.

The train–test split is well balanced and suitable for downstream modeling. The test set can
be treated as a genuine proxy for unseen data, allowing us to evaluate normalization strategies
without confounding effects from an unbalanced split.

Model Specification: A Scale-Sensitive Baseline

Before comparing different normalization strategies, we must fix the modeling component of
the pipeline. This ensures that any performance differences observed later can be attributed to
preprocessing choices rather than to changes in the model itself.

Why KNN Regression?

23

We deliberately choose k-nearest neighbors (KNN) regression for this demonstration.
The reason is methodological, not practical.

KNN is a distance-based algorithm: predictions are determined by the distances between
observations in the feature space. As a result, KNN is highly sensitive to the scale of the
predictors. Variables with larger numeric ranges can dominate distance calculations, even if
they are not substantively more important.

This property makes KNN an ideal diagnostic tool for studying the effects of scaling.

Model Specification

We define a single KNN model that will be used in all subsequent scenarios.

knn_spec <- nearest_neighbor(
neighbors = 15,
weight_func = "rectangular"

) %>%
set_engine("kknn") %>%
set_mode("regression")

Commentary.

• The number of neighbors is fixed at 15 to reduce variance while maintaining locality.

• No hyperparameter tuning is performed, as optimization is not the goal here.

• This model specification will remain unchanged across all preprocessing pipelines.

Scenario A — Baseline: No Scaling

We begin with a baseline workflow in which no scaling is applied. This provides a reference
point against which all normalized pipelines will be compared.

rec_none <- recipe(Sale_Price ~ ., data = train_data)

wf_none <- workflow() %>%
add_recipe(rec_none) %>%
add_model(knn_spec)

fit_none <- fit(wf_none, data = train_data)

24

INFO Note

Note on model engines.
In the tidymodels ecosystem, model specifications are defined independently
of the underlying computational engines. Although we specify the KNN model
via nearest_neighbor(), the actual implementation is provided by the kknn
package.
If the package is not installed, fitting the model will fail. To proceed, install
and load the required engine:

install.packages("kknn")
library(kknn)

This separation between model specification and engine implementation is
intentional and allows tidymodels to remain modular and extensible.

Evaluate on the Test Set

pred_none <- predict(fit_none, test_data) %>%
bind_cols(test_data %>% dplyr::select(Sale_Price))

metrics_none <- yardstick::metrics(
pred_none,
truth = Sale_Price,
estimate = .pred
)

metrics_none

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 35643.
2 rsq standard 0.816
3 mae standard 23726.

Interpretation

These values are not “good” or “bad” in isolation; what matters is that they provide a stable
reference. At this stage, the model operates on raw predictor scales. For a distance-based
method like KNN, this implies:

25

• Predictors with larger numeric ranges (e.g., Lot_Area) can disproportionately influence
distance calculations.

• Smaller-range variables (e.g., ordinal-like Overall_Cond) may contribute less than in-
tended.

• The model’s behavior is therefore partially shaped by measurement units, not only by
predictive structure.

This is exactly why KNN is a useful diagnostic tool in a normalization-focused article: if scaling
matters, we should see clear changes relative to this baseline once we introduce normalization.

Next, we introduce scaling—but incorrectly on purpose. We will apply normalization before
the train–test split (i.e., using information from the full dataset). This creates data leakage
and can lead to deceptively improved test performance.

After that, we will implement the correct workflow (fit scaling parameters on the training set
only) and compare all scenarios side by side.

Scenario B — Incorrect Normalization (Data Leakage)

In this scenario, we intentionally apply normalization the wrong way: we learn scaling
parameters from the full dataset (including what will become the test set). This contaminates
the evaluation because preprocessing has already “seen” information from the test distribution.

The goal is not to recommend this approach, but to demonstrate how easily leakage can
happen—and how it can artificially improve test metrics.

Leakage Pipeline: Normalize Using Full Data

The step_normalize() operation applies only to numeric predictors. In our dataset,
Overall_Cond is stored as a factor (ordinal-like category), so it must not be normalized
directly.

rec_leak <- recipe(Sale_Price ~ ., data = ames_small) %>%
step_normalize(all_numeric_predictors())

WRONG on purpose: prepping on full data (leakage), but now type-safe
prep_leak <- prep(rec_leak, training = ames_small)

train_leak <- bake(prep_leak, new_data = train_data)
test_leak <- bake(prep_leak, new_data = test_data)

wf_leak <- workflow() %>%

26

add_model(knn_spec) %>%
add_formula(Sale_Price ~ .)

fit_leak <- fit(wf_leak, data = train_leak)

pred_leak <- predict(fit_leak, test_leak) %>%
bind_cols(test_leak %>% dplyr::select(Sale_Price))

metrics_leak <- yardstick::metrics(pred_leak, truth = Sale_Price, estimate = .pred)
metrics_leak

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 37036.
2 rsq standard 0.801
3 mae standard 24411.

Interpretation

The performance obtained under this scenario reflects the consequences of incorrect normal-
ization with data leakage.

Compared to the baseline (no scaling), all three metrics deteriorate. This indicates that learning
normalization parameters from the full dataset does not automatically lead to better predictive
performance. In this case, the leakage-induced transformation appears to distort the distance
structure in a way that is unfavorable for KNN.

This result is particularly instructive because it challenges a common misconception:
data leakage does not necessarily inflate performance metrics. Its effect depends on
the interaction between the preprocessing step, the data distribution, and the model. What
leakage does guarantee, however, is that the evaluation is no longer valid.

Even if the metrics had improved under this scenario, they could not be trusted as estimates
of out-of-sample performance. The test data would no longer represent genuinely unseen
observations, since information from their distribution had already been incorporated during
preprocessing.

At this point, two important conclusions can be drawn:

1. Scaling decisions materially affect model behavior, especially for distance-based methods.

2. The timing of scaling—when parameters are learned—is as critical as whether scaling is
applied at all.

27

In the next scenario, we apply normalization correctly by estimating scaling parameters using
the training data only and then applying them unchanged to the test set. This will provide
the only defensible estimate of generalization performance among the normalization strategies
considered.

Scenario C — Correct Normalization (Train-Only Scaling)

In this final preprocessing scenario, normalization parameters are learned exclusively from
the training data and then applied consistently to both the training and test sets.

This workflow adheres to the core principle of leakage-free modeling.

Correct Pipeline: Normalize Using Training Data Only

rec_ok <- recipe(Sale_Price ~ ., data = train_data) %>%
step_normalize(all_numeric_predictors())

wf_ok <- workflow() %>%
add_recipe(rec_ok) %>%
add_model(knn_spec)

fit_ok <- fit(wf_ok, data = train_data)

pred_ok <- predict(fit_ok, test_data) %>%
bind_cols(test_data %>% dplyr::select(Sale_Price))

metrics_ok <- yardstick::metrics(pred_ok, truth = Sale_Price, estimate = .pred)

metrics_ok

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 35643.
2 rsq standard 0.816
3 mae standard 23726.

28

Interpretation

This scenario represents the correct normalization workflow, where scaling parameters are
learned exclusively from the training data and then applied unchanged to the test set. The
results are identical to the no-scaling baseline. This finding is highly informative.

First, it confirms that normalization itself does not automatically improve model performance.
When applied correctly, scaling does not inject additional information into the modeling process;
it merely changes the representation of the data. If the underlying distance structure relevant
for prediction is already dominated by certain predictors, scaling may have little to no effect
on performance.

Second, the contrast with the leakage scenario is crucial. In Scenario B, incorrect normalization
degraded performance, while in this scenario, correct normalization restores the metrics to
their baseline levels. This symmetry reinforces the core message of this article:
the validity of preprocessing matters more than the apparent gains it may pro-
duce.

Third, these results highlight an often-overlooked point: the impact of scaling is model-
and data-dependent. For this particular subset of predictors and this KNN configuration,
normalization neither helps nor harms when applied correctly. In other settings—different
feature sets, different distance metrics, or different models—the effect could be substantial.

The key takeaway is therefore not that scaling is unnecessary, but that it must be:

applied deliberately,

restricted to appropriate variables,

and learned at the correct stage of the modeling workflow.

With all three scenarios evaluated, we can now compare them side by side and distill the
practical lessons they offer.

Results Comparison

With all three scenarios evaluated, we now compare them side by side. Since the model and data
split were held constant, any differences observed here are entirely attributable to preprocessing
choices.

Performance Summary

29

results_tbl <- dplyr::bind_rows(
metrics_none %>% mutate(scenario = "A — No Scaling"),
metrics_leak %>% mutate(scenario = "B — Incorrect Scaling (Leakage)"),
metrics_ok %>% mutate(scenario = "C — Correct Scaling (Train-Only)")

) %>%
dplyr::select(scenario, .metric, .estimate) %>%
tidyr::pivot_wider(

names_from = .metric,
values_from = .estimate

)

results_tbl

A tibble: 3 x 4
scenario rmse rsq mae
<chr> <dbl> <dbl> <dbl>

1 A — No Scaling 35643. 0.816 23726.
2 B — Incorrect Scaling (Leakage) 37036. 0.801 24411.
3 C — Correct Scaling (Train-Only) 35643. 0.816 23726.

This table summarizes test-set performance across all scenarios.

• Scenario A (No Scaling) serves as the baseline.

• Scenario B (Incorrect Scaling with Leakage) shows degraded performance.

• Scenario C (Correct Scaling) reproduces the baseline results exactly.

Visual Comparison (RMSE)

To make the differences easier to interpret, we visualize RMSE across scenarios.

results_tbl %>%
ggplot(aes(x = scenario, y = rmse, fill = scenario)) +
geom_col(alpha = 0.8) +
scale_fill_manual(
values = c(
"A — No Scaling" = "#1f77b4",
"B — Incorrect Scaling (Leakage)" = "#d62728",
"C — Correct Scaling (Train-Only)" = "#2ca02c"
)
) +

30

labs(
title = "RMSE comparison across preprocessing scenarios",
x = "Preprocessing scenario",
y = "RMSE"
) +
theme_minimal() +
theme(legend.position = "none")

0

10000

20000

30000

A — No Scaling B — Incorrect Scaling (Leakage)C — Correct Scaling (Train−Only)
Preprocessing scenario

R
M

S
E

RMSE comparison across preprocessing scenarios

Interpretation

Several important conclusions emerge from this comparison.

First, normalization does not inherently improve performance. When applied correctly
(Scenario C), scaling neither improves nor degrades performance relative to the no-scaling
baseline. This confirms that normalization is a representational transformation, not a source of
predictive signal.

Second, incorrect normalization can be harmful. Scenario B demonstrates that learning
scaling parameters from the full dataset can distort the feature space in ways that negatively
affect model behavior. Even more importantly, this scenario yields an invalid evaluation,
regardless of whether the metrics appear better or worse.

31

Third, these results reinforce a central theme of this article:
the correctness of the preprocessing workflow matters more than the choice of
preprocessing method itself.

In practice, this means that:

• scaling should be applied only when it aligns with the model’s assumptions,

• preprocessing parameters must be learned exclusively from training data,

• and any apparent performance gains should be scrutinized for potential leakage.

Practical Takeaways from the Application

From this controlled experiment, we can distill three practical lessons:

1. Do not expect normalization to be a silver bullet. Its impact depends on the
model, the data, and the feature set.

2. Never compromise the train–test boundary. Leakage can invalidate results even
when performance does not improve.

3. Treat preprocessing as part of the model. Decisions about scaling are modeling
decisions, not technical afterthoughts.

These lessons generalize beyond KNN and apply to any workflow involving scale-sensitive
models and data transformations.

Discussion and Conclusion

Normalization is often introduced as a routine preprocessing step, applied almost reflexively
before modeling. This article has argued—and demonstrated—that such a view is incom-
plete. Normalization is not a purely technical adjustment; it is a modeling decision whose
consequences depend on the interaction between data, model assumptions, and evaluation
design.

From a theoretical perspective, scaling matters because many learning algorithms are sensitive
to the relative magnitudes of predictors. Distance-based methods, regularized models, kernel
methods, and optimization-driven algorithms implicitly encode assumptions about scale. Ignor-
ing these assumptions can distort model behavior, while respecting them can improve stability
and interpretability. At the same time, scaling does not create new information. It reshapes
how existing information is represented.

The empirical application using the Ames Housing dataset reinforced these points. By holding
the model and data split constant and varying only the preprocessing strategy, we isolated the
effect of normalization decisions. Three key findings emerged.

32

First, normalization does not guarantee performance improvements. In the correct
workflow, scaling reproduced the baseline results exactly. This confirms that normalization
should not be expected to “fix” a model by itself. Its role is conditional and context-dependent.

Second, incorrect normalization compromises validity. Learning scaling parameters
from the full dataset—thereby introducing data leakage—altered model behavior and degraded
performance in this example. More importantly, even if the metrics had improved, the
evaluation would have been invalid. Leakage undermines the fundamental purpose of a test set:
to approximate unseen data.

Third, the timing of preprocessing is as important as the method chosen. The
difference between valid and invalid evaluation hinged not on whether scaling was applied, but
on when its parameters were learned. This distinction is often overlooked in practice, yet it is
central to trustworthy modeling.

Taken together, these results support a broader principle: preprocessing steps should be treated
as integral components of the modeling pipeline, not as detached technical preliminaries.
Decisions about normalization should be guided by model assumptions, data characteristics,
and evaluation design—not by habit or generic checklists.

In practical terms, this leads to a simple but robust rule:

Split the data first. Learn preprocessing parameters from the training
set only. Apply the same transformations to all future data.

Normalization, when used deliberately and correctly, is a powerful tool. When applied me-
chanically or at the wrong stage, it can mislead. Understanding this distinction is essential for
building models that are not only accurate, but also scientifically defensible.

References

• Hastie, T., Tibshirani, R., & Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

• Kuhn, M., & Johnson, K. (2013).
Applied Predictive Modeling. Springer.

• Kuhn, M., & Wickham, H. (2023).
Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse
Principles.
https://www.tidymodels.org/

• Tidymodels Recipes Documentation.
https://recipes.tidymodels.org/

33

https://www.tidymodels.org/
https://recipes.tidymodels.org/

• Kuhn, M. (Caret package documentation).
https://topepo.github.io/caret/

• Modeldata package documentation (Ames Housing dataset).
https://modeldata.tidymodels.org/reference/ames.html

34

https://topepo.github.io/caret/
https://modeldata.tidymodels.org/reference/ames.html

	Introduction
	Normalization vs. Standardization: Clearing Up the Terminology
	Why Is Normalization Necessary?
	Should Normalization Always Be Applied?
	When Is Normalization Needed? A Model-Based Decision Table

	When Should Normalization Be Applied? Before or After the Train–Test Split?
	An Illustrative Example: Scaling Before vs. After the Split

	Common Normalization Methods and When to Use Them
	Z-score Standardization
	Min–Max (Range) Scaling
	Robust Scaling (Median and IQR)
	Power Transformations Combined with Scaling (Box–Cox and Yeo–Johnson)
	Choosing a Method: No Single Best Answer

	Do Different Data Types Require Different Scaling Strategies?
	Continuous Numeric Variables
	Count and Ordinal Numeric Variables
	Categorical Variables (Factors or Characters)
	Binary Variables (0/1 Indicators)
	Summary: Scaling Depends on Variable Meaning

	Should All Variables Be Scaled?
	The Target Variable (y)
	Predictor Variables
	Numeric Predictors Only
	Excluding Non-informative Numeric Variables
	Handling Low-Variance Predictors

	A Practical Rule of Thumb

	Application Plan in R: Data and Modeling Scenario
	Modeling Objective
	Scope and Focus
	Transition to Implementation
	Data Access and Availability

	Implementation in R: Split, Baseline, and the Cost of Doing It Wrong
	Setup and Variable Selection
	Load Data and Create a Working Dataset
	Train–Test Split and Evaluation Setup
	Create a Stratified Train–Test Split
	Sanity Check: Is the Target Distribution Similar Across Splits?
	Optional Check: Quick Summary Statistics

	Model Specification: A Scale-Sensitive Baseline
	Model Specification

	Scenario A — Baseline: No Scaling
	Evaluate on the Test Set
	Interpretation

	Scenario B — Incorrect Normalization (Data Leakage)
	Leakage Pipeline: Normalize Using Full Data
	Interpretation

	Scenario C — Correct Normalization (Train-Only Scaling)
	Correct Pipeline: Normalize Using Training Data Only
	Interpretation

	Results Comparison
	Performance Summary
	Visual Comparison (RMSE)
	Interpretation

	Practical Takeaways from the Application

	Discussion and Conclusion
	References

